>
CUET (PG)
>
Mathematics
List of top Mathematics Questions asked in CUET (PG)
The solution of (x
2
-√2y) dx + (y
2
- √2x) dy = 0 is given by
CUET (PG) - 2023
CUET (PG)
Mathematics
Solutions of Differential Equations
The area of region bounded by the curve y
2
=x, the y-axis and between y = 2 and y = 4 is
CUET (PG) - 2023
CUET (PG)
Mathematics
Curves
A rectangular box open at the top is to have volume of 32 cubic feets. The minimum outer surface area of the box is
CUET (PG) - 2023
CUET (PG)
Mathematics
Surface Area of Cube, Cuboid and Cylinder
Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): Equation 5x-7y+z=11, 6x-8y-z=15 and 3x+2y-6z=7, then the system is consistent and has infinitely many solutions.
Reasons (R): If D=0 then the 3 linear equations is consistent and has infinitely many solutions if D
1
= D
2
= D
3
=0.
In the light of the above Statements, choose the correct answer from the options given below :
CUET (PG) - 2023
CUET (PG)
Mathematics
Equations
Which of the following is incorrect?
CUET (PG) - 2023
CUET (PG)
Mathematics
Vector space
Which of the following are generators of the multiplicative group {(1,2,3,4,5,6), x
7
} where x
7
denotes multiplication moduls 7?
CUET (PG) - 2023
CUET (PG)
Mathematics
Vector space
The value of the dot product of the eigenvectors corresponding to any pair of different eigen values of a 4 × 4 symmetric positive definite matrix is
CUET (PG) - 2023
CUET (PG)
Mathematics
Eigenvectors
If
F
→
=
y
2
i
^
+
x
y
j
^
+
x
z
k
^
\overrightarrow F=y^2\hat{i}+xy\hat{j}+xz\hat{k}
F
=
y
2
i
^
+
x
y
j
^
+
x
z
k
^
and C is the bounding curve of the hemisphere x
2
+y
2
+z
2
=9,z>0, oriented in the positive direction, then value of
∫
C
F
→
⋅
d
r
^
\int\limits_C \overrightarrow F\cdot d\hat{r}
C
∫
F
⋅
d
r
^
is
CUET (PG) - 2023
CUET (PG)
Mathematics
Application of Integrals
If
A
⃗
=
(
3
x
2
+
6
y
)
i
^
—
14
y
z
j
^
+
20
x
z
2
k
^
\vec{A} =(3x^2+6y)\hat{i}—14yz\hat{j} +20xz^2\hat{k}
A
=
(
3
x
2
+
6
y
)
i
^
—14
yz
j
^
+
20
x
z
2
k
^
, then the line integral
∫
C
A
⃗
.
d
r
ˉ
\int\limits_{C} \vec{A}.d\bar{r}
C
∫
A
.
d
r
ˉ
from (0.0, 0) to (1, 1.1), along the curve C ;x=t, y=t
2
. z=t
3
is:
CUET (PG) - 2023
CUET (PG)
Mathematics
Application of Integrals
The infinite series
∑
n
=
1
∞
(
1
+
1
n
)
−
n
2
\displaystyle\sum_{n=1}^{∞} (1+\frac{1}{n})^{-n^2}
n
=
1
∑
∞
(
1
+
n
1
)
−
n
2
is:
CUET (PG) - 2023
CUET (PG)
Mathematics
Principle of Mathematical Induction
The infinite series
∑
n
=
1
∞
3
n
4
n
+
2
\displaystyle\sum_{n=1}^{∞} \frac{3^n}{4^{n+2}}
n
=
1
∑
∞
4
n
+
2
3
n
is:
CUET (PG) - 2023
CUET (PG)
Mathematics
Principle of Mathematical Induction
Match List I with List II
LIST I
LIST II
A
.
Series
∑
n
=
1
∞
1
n
3
2
\displaystyle\sum_{n=1}^{∞} \frac{1}{n^\frac{3}{2}}
n
=
1
∑
∞
n
2
3
1
is
I
.
Monotone and
convergent both
B
.
Series
∑
n
=
1
∞
3
n
n
2
\displaystyle\sum_{n=1}^{∞} \frac{3^n}{n^2}
n
=
1
∑
∞
n
2
3
n
is
II
.
e
−
2
e^{-2}
e
−
2
C
.
lim
n
→
∞
(
n
+
1
n
+
2
)
2
n
+
1
\lim\limits_{n \to \infty} (\frac{n+1}{n+2})^{2n+1}
n
→
∞
lim
(
n
+
2
n
+
1
)
2
n
+
1
III
.
Divergent to
∞
D
.
sequence
x
n
=
1
+
1
2
!
+
1
3
!
+
…
1
n
!
x_n=1+\frac{1}{2!}+\frac{1}{3!}+…\frac{1}{n!}
x
n
=
1
+
2
!
1
+
3
!
1
+
…
n
!
1
for n∈N
IV
.
Convergent
Choose the correct answer from the options given below:
CUET (PG) - 2023
CUET (PG)
Mathematics
Principle of Mathematical Induction
The value of
lim
n
→
∞
1
n
[
1
+
2
1
2
+
3
1
3
+
.
.
.
n
1
n
]
\lim\limits_{n \to \infty} \frac{1}{n} [1+2^{\frac{1}{2}}+3^{\frac{1}{3}}+...n^{\frac{1}{n}}]
n
→
∞
lim
n
1
[
1
+
2
2
1
+
3
3
1
+
...
n
n
1
]
is
CUET (PG) - 2023
CUET (PG)
Mathematics
Principle of Mathematical Induction
If
f
(
x
,
y
)
=
x
2
+
y
2
+
6
x
+
12
f(x,y)=x^2+y^2+6x+12
f
(
x
,
y
)
=
x
2
+
y
2
+
6
x
+
12
, then minimum value of f is:
CUET (PG) - 2023
CUET (PG)
Mathematics
Maxima & Minima
Evaluate the integral
∮
C
d
z
(
z
2
+
4
)
2
,
C
:
∣
z
−
i
∣
=
2
\oint\limits_C\frac{dz}{(z^2+4)^2},C:|z-i|=2
C
∮
(
z
2
+
4
)
2
d
z
,
C
:
∣
z
−
i
∣
=
2
CUET (PG) - 2023
CUET (PG)
Mathematics
Integration
Which one of the following is harmonic function
CUET (PG) - 2023
CUET (PG)
Mathematics
Application of derivatives
Given below are two statements:
Statement I : If x
2
y" - 2xy' - 4y = x
4
, then
C
.
F
.
=
C
1
x
+
C
2
x
4
C.F.=\frac{C_1}{x}+C_2x^4
C
.
F
.
=
x
C
1
+
C
2
x
4
Statement II: If (D
2
-8D+15) y = 0, then auxiliary equation has equal roots.
In the light of the above statements, choose the correct answer from the options given below
CUET (PG) - 2023
CUET (PG)
Mathematics
Application of Integrals
The rank of matrix A =
[
1
3
1
−
2
−
3
1
4
3
−
1
−
4
2
3
−
4
−
7
−
3
3
8
1
−
7
−
8
]
\begin{bmatrix} 1&3&1&-2&-3\\1&4&3&-1&-4\\2&3&-4&-7&-3\\3&8&1&-7&-8 \end{bmatrix}
1
1
2
3
3
4
3
8
1
3
−
4
1
−
2
−
1
−
7
−
7
−
3
−
4
−
3
−
8
CUET (PG) - 2023
CUET (PG)
Mathematics
Matrices
The solution of the Linear Programming Problem
maximize Z = 107x + y
subject to constraints x + y ≤2
-3x + y ≥ 3
x, y ≥ 0 is
CUET (PG) - 2023
CUET (PG)
Mathematics
Linear Programmig Problem
Let A =
[
2
3
4
−
1
]
\begin{bmatrix}2&3\\4&-1\end{bmatrix}
[
2
4
3
−
1
]
then the matrix B that represents the linear operator A relative to the basis
S = {
u
1
,
u
2
u_1,u_2
u
1
,
u
2
}=
[
1
,
3
]
T
,
[
2
,
5
]
T
{[1, 3]^T, [2, 5]^T}
[
1
,
3
]
T
,
[
2
,
5
]
T
, is:
CUET (PG) - 2023
CUET (PG)
Mathematics
Matrices
Which one of the following is a cyclic group?
CUET (PG) - 2023
CUET (PG)
Mathematics
Matrices
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R
Assertion A: The given vector
F
⃗
=
(
y
2
−
z
2
+
3
y
z
−
2
x
)
i
^
+
(
3
x
z
+
2
x
y
)
j
^
+
(
3
x
y
−
2
x
z
+
2
z
)
k
^
\vec{F}=(y^2-z^2+3yz-2x)\hat{i} +(3xz+2xy)\hat{j}+(3xy-2xz+2z)\hat{k}
F
=
(
y
2
−
z
2
+
3
yz
−
2
x
)
i
^
+
(
3
x
z
+
2
x
y
)
j
^
+
(
3
x
y
−
2
x
z
+
2
z
)
k
^
is solenoidal
Reason R: A vector
F
⃗
\vec{F}
F
is said to be solenoidal if div
F
⃗
\vec{F}
F
= 0
In the light of the above statements, choose the correct answer from the options given below :
CUET (PG) - 2023
CUET (PG)
Mathematics
Vector Algebra
If the curl of vector
A
⃗
=
(
2
x
y
−
3
y
z
)
i
^
+
(
x
2
+
a
x
z
−
4
z
2
)
j
^
−
(
3
x
y
+
b
y
z
)
k
^
\vec{A} = (2xy-3yz)\hat{i} +(x^2+axz −4z^2)\hat{j}-(3xy+byz)\hat{k}
A
=
(
2
x
y
−
3
yz
)
i
^
+
(
x
2
+
a
x
z
−
4
z
2
)
j
^
−
(
3
x
y
+
b
yz
)
k
^
is zero, then a + b is equal to :
CUET (PG) - 2023
CUET (PG)
Mathematics
Vector Algebra
For what value(s) of k the set of vectors {(1, k, 5), (1, -3, 2), (2, -1, 1)} form a basis in R
3
?
CUET (PG) - 2023
CUET (PG)
Mathematics
Vector Algebra
The work done by the force
F
→
=
(
x
2
−
y
2
)
i
^
+
(
x
+
y
)
j
^
\overrightarrow F = (x^2-y^2)\hat{i} + (x+y)\hat{j}
F
=
(
x
2
−
y
2
)
i
^
+
(
x
+
y
)
j
^
in moving a particle along the closed path C containing the curves x + y = 0, x
2
+ y
2
= 16 and y = x in the first and fourth quadrant is
CUET (PG) - 2023
CUET (PG)
Mathematics
Vector Algebra
Prev
1
...
8
9
10
11
12
...
21
Next