>
CUET (PG)
List of top Questions asked in CUET (PG)
Minimum value of the correlation coefficient 'r' in a sample of 27 pairs from a bivariate normal population, significant at 5% level, is: (Given \(t_{0.05} (25) = 2.06\))
CUET (PG) - 2025
CUET (PG)
Statistics
Hypothesis testing
In a survey of 200 boys, 75 were intelligent and out of these intelligent boys, 40 had an education from the government schools. Out of not intelligent boys, 85 had an education form the private schools. Then, the value of the test statistic, to test the hypothesis that there is no association between the education from the schools and intelligence of boys, is:
CUET (PG) - 2025
CUET (PG)
Statistics
Hypothesis testing
If, joint distribution function of two random variables X and Y is given by \(F_{X,Y}(x,y) = \begin{cases} 1 - e^{-x} - e^{-y} + e^{-(x+y)} & ; x>0; y>0 \\ 0 & ; \text{otherwise} \end{cases}\), then Var(\(X\)) is
CUET (PG) - 2025
CUET (PG)
Statistics
Standard Distributions
Let \(X_1, X_2, X_3\) be three variables with means 3, 4 and 5 respectively, variances 10, 20 and 30 respectively and \(cov (X_1, X_2) = cov (X_2, X_3) = 0\) and \(cov (X_1, X_3) = 5\). If, \(Y = 2X_1 +3X_2+4X_3\) then, Var(\(Y\)) is:
CUET (PG) - 2025
CUET (PG)
Statistics
Random variables
Three urns contain 3 green and 2 white balls, 5 green and 6 white balls and 2 green and 4 white balls respectively. One ball is drawn at random from each of the urn. Then, the expected number of white balls drawn, is
CUET (PG) - 2025
CUET (PG)
Statistics
Random variables
Out of 800 families with 4 children each, the percentage of families having no girls is:
CUET (PG) - 2025
CUET (PG)
Statistics
Standard Distributions
Let, random variable \(X \sim \text{Bernoulli}(p)\). Then, \(\beta_1\) is
CUET (PG) - 2025
CUET (PG)
Statistics
Random variables
If the mean and variance of 5 values are both 4 and three out of 5 values are 1, 7 and 3, then the remaining two values are:
CUET (PG) - 2025
CUET (PG)
Statistics
Applied Statistics
A six-faced die is rolled twice. Then the probability that an even number turns up at the first throw, given that the sum of the throws is 8, is
CUET (PG) - 2025
CUET (PG)
Statistics
Probability theory
A card is drawn at random from a standard deck of 52 cards. Then, the probability of getting either an ace or a club is:
CUET (PG) - 2025
CUET (PG)
Statistics
Probability theory
A cyclist covers first five kilometers at an average speed of 10 k.m. per hour, another three kilometers at 8 k.m. per hour and the last two kilometers at 5 k.m. per hour. Then, the average speed of the cyclist during the whole journey, is
CUET (PG) - 2025
CUET (PG)
Statistics
Speed, Time and Distance
It is given that at x = 1, the function \(f(x) = x^4 - 62x^2 + ax + 9\), attains its maximum value in the interval \([0, 2]\). Then, the value of 'a' is
CUET (PG) - 2025
CUET (PG)
Statistics
Maxima and Minima
Function, \(f(x) = -|x-1|+5, \forall x \in R\) attains maximum value at x =
CUET (PG) - 2025
CUET (PG)
Statistics
Maxima and Minima
The limit of the sequence,
\(\{b_n; b_n = \frac{n^n}{(n+1)(n+2)...(n+n)}; n>0\}\), is
CUET (PG) - 2025
CUET (PG)
Statistics
Sequences and Series
The area of the surface generated by revolving the curve \(X = \sqrt{9-Y^2}, -2 \leq Y \leq 2\) about the y-axis, is
CUET (PG) - 2025
CUET (PG)
Statistics
Calculus
The volume of the solid for the region enclosed by the curves \(X = \sqrt{Y}\), \(X = \frac{Y}{4}\) revolve about x-axis, is
CUET (PG) - 2025
CUET (PG)
Statistics
Calculus
The value of \( \lim_{h \to 0} \left(\frac{1}{h} \int_{4}^{4+h} e^{t^2} dt \right) \) is
CUET (PG) - 2025
CUET (PG)
Statistics
Calculus
Consider a 2x2 matrix \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\). If \(a+d=1\) and \(ad-bc=1\), then \(A^3\) is equal to
CUET (PG) - 2025
CUET (PG)
Statistics
Linear Algebra
For Lagrange's mean value theorem, the value of 'c' for the function \(f(x) = px^2+qx+r, p\neq 0\) in the interval \([1, b]\) and \(c \in ]1, b[\), is:
CUET (PG) - 2025
CUET (PG)
Statistics
Calculus
Which of the following statement is true about the geometric series \(1+r+r^2+r^3+.............; (r>0)\) ?
CUET (PG) - 2025
CUET (PG)
Statistics
Standard Distributions
The value of \(\lim_{x \to 1} \frac{x^3-1}{x-1}\) is
CUET (PG) - 2025
CUET (PG)
Statistics
Calculus
If \(f'(x) = 3x^2 - \frac{2}{x^2}\), \(f(1) = 0\) then, \(f(x)\) is
CUET (PG) - 2025
CUET (PG)
Statistics
Calculus
The system of equations given by \( \begin{bmatrix} 1 & 1 & 1 & : & 3 \\ 0 & -2 & -2 & : & 4 \\ 1 & -5 & 0 & : & 5 \end{bmatrix} \) has the solution:
CUET (PG) - 2025
CUET (PG)
Statistics
Linear Algebra
Let P and Q be two square matrices such that PQ = I, where I is an identity matrix. Then zero is an eigen value of
CUET (PG) - 2025
CUET (PG)
Statistics
Linear Algebra
A is a, \(n \times n\) matrix of real numbers and \(A^3 - 3A^2 + 4A - 6I = 0\), where I is a, \(n \times n\) unit matrix. If \(A^{-1}\) exists, then
CUET (PG) - 2025
CUET (PG)
Statistics
Linear Algebra
Prev
1
...
130
131
132
133
134
...
491
Next