Find $x, y, z$ and $w$ given that $3 \begin{bmatrix} x & y \\z & w \end{bmatrix} = \begin{bmatrix} x & 5 \\-1 & 2w \end{bmatrix} +\begin{bmatrix} 6 & x+y \\z+w & 5 \end{bmatrix}$
Find the largest eigenvalue of the matrix $\begin{bmatrix} 5 & 4 \\1 & 2 \end{bmatrix}$
The Laurent series of $ f(z) = \frac{z}{(z^2+1)(z^2+4)} $ for $ |z|<1 $ is:
If $p = \frac{1}{8}; n = 640; q = \frac{7}{8}$, then variance Binomial Distribution