The relationship between Young's modulus ($Y$), stress ($\sigma$), and strain ($\epsilon$) is given by:
\[ Y = \frac{\sigma}{\epsilon} \]
We need to find the limiting stress ($\sigma$). Rearranging the formula, we get: \[ \sigma = Y \times \epsilon \] Substituting the given values:
\[ \sigma = (2 \times 10^{11} \, \text{N/m}^2) \times (0.15) \] \[ \sigma = 0.30 \times 10^{11} \, \text{N/m}^2 \] \[ \sigma = 3.0 \times 10^{-1} \times 10^{11} \, \text{N/m}^2 \] \[ \sigma = 3.0 \times 10^{(-1 + 11)} \, \text{N/m}^2 \] \[ \sigma = 3.0 \times 10^{10} \, \text{N/m}^2 \] The value of limiting stress is \(3 \times 10^{10} \, \text{N/m}^2\).
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $