Step 1: Calculate the mean value.
\[
\sqrt{AB} = \sqrt{(1.0)(2.0)} = \sqrt{2} \approx 1.41 \approx 1.4
\]
Step 2: Find fractional errors.
For a quantity \(Q = A^{1/2}B^{1/2}\),
\[
\frac{\Delta Q}{Q}
=
\frac{1}{2}\left(\frac{\Delta A}{A} + \frac{\Delta B}{B}\right)
\]
\[
\frac{\Delta A}{A} = \frac{0.2}{1.0} = 0.2,
\quad
\frac{\Delta B}{B} = \frac{0.2}{2.0} = 0.1
\]
\[
\frac{\Delta Q}{Q}
=
\frac{1}{2}(0.2 + 0.1) = 0.15
\]
Step 3: Find absolute error.
\[
\Delta Q = 0.15 \times 1.41 \approx 0.21 \approx 0.3
\]
Final Answer:
\[
\boxed{\sqrt{AB} = (1.4 \pm 0.3)\,\text{m}}
\]