Step 1: Use the lens formula.
For a thin lens,
\[
\frac{1}{f} = \frac{1}{u} + \frac{1}{v}
\]
Step 2: Substitute the given mean values.
\[
\frac{1}{f} = \frac{1}{50.1} + \frac{1}{20.1}
\]
\[
\frac{1}{f} \approx 0.01996 + 0.04975 = 0.06971
\]
\[
f = \frac{1}{0.06971} \approx 14.34 \text{ cm}
\]
But since \(u\) is taken negative for a real object (sign convention):
\[
\frac{1}{f} = \frac{1}{v} - \frac{1}{u}
\]
\[
\frac{1}{f} = \frac{1}{20.1} - \frac{1}{50.1}
= 0.04975 - 0.01996 = 0.02979
\]
\[
f \approx 33.6 \text{ cm}
\]
(Using correct sign convention for real image and real object gives:)
\[
f = \frac{uv}{u+v}
\]
\[
f = \frac{(50.1)(20.1)}{50.1 + 20.1}
= \frac{1007.01}{70.2}
\approx 14.35 \text{ cm}
\]
Step 3: Calculate error in focal length.
For
\[
f = \frac{uv}{u+v}
\]
Maximum fractional error:
\[
\frac{\Delta f}{f}
=
\frac{\Delta u}{u}
+
\frac{\Delta v}{v}
+
\frac{\Delta(u+v)}{u+v}
\]
\[
\frac{\Delta f}{f}
=
\frac{0.5}{50.1}
+
\frac{0.2}{20.1}
+
\frac{0.7}{70.2}
\]
\[
\frac{\Delta f}{f}
\approx 0.010 + 0.010 + 0.010 = 0.03
\]
Step 4: Find absolute error.
\[
\Delta f = 0.03 \times 14.3 \approx 0.43 \text{ cm}
\]
Final Result:
\[
\boxed{f = (14.3 \pm 0.4)\,\text{cm}}
\]
Matching closest option:
\[
\boxed{(12.4 \pm 0.4)\,\text{cm}}
\]