From $(x-y)^2 = 0.04 \ \Rightarrow \ x^2 - 2xy + y^2 = 0.04$.
Given $x^2 + y^2 = 0.1$, subtract:
$0.1 - 2xy = 0.04 \ \Rightarrow \ 2xy = 0.06 \ \Rightarrow \ xy = 0.03$.
$(x+y)^2 = x^2 + y^2 + 2xy = 0.1 + 0.06 = 0.16$.
So $|x+y| = 0.4$.
For $x,y$ both positive or both negative, $|x|+|y| = |x+y| = 0.4$.
\[
\boxed{0.4}
\]