Question:

$ \int{\frac{{{x}^{3}}\sin [{{\tan }^{-1}}{{(x)}^{4}}]}{1+{{x}^{8}}}}dx $ is equal to:

Updated On: May 18, 2024
  • $ \frac{1}{4}\cos [{{\tan }^{-1}}({{x}^{4}})]+c $
  • $ \frac{1}{4}\sin [{{\tan }^{-1}}({{x}^{4}})]+c $
  • $ -\frac{1}{4}\cos [{{\tan }^{-1}}({{x}^{4}})]+c $
  • $ \frac{1}{4}{{\sec }^{-1}}[{{\tan }^{-1}}({{x}^{4}})]+c $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let $ I=\int{\frac{{{x}^{3}}\sin [{{\tan }^{-1}}({{x}^{4}})]dx}{1+{{x}^{8}}}} $ Let $ {{x}^{4}}=t $ $ \Rightarrow $ $ 4{{x}^{3}}dx=dt $ $ \therefore $ $ I=\int{\frac{1}{4}\frac{\sin ({{\tan }^{-1}}(t))dt}{1+{{t}^{2}}}} $ Let $ {{\tan }^{-1}}t=u $ $ \Rightarrow $ $ \frac{1}{1+{{t}^{2}}}dt=du $ $ \therefore $ $ I=\int{\frac{1}{4}\sin u\,du} $ $ =-\frac{1}{4}\cos u+c=-\frac{1}{4}\cos {{\tan }^{-1}}(t)+c $ $ =-\frac{1}{4}\cos {{\tan }^{-1}}({{x}^{4}})+c $
Was this answer helpful?
0
0

Top Questions on Methods of Integration

View More Questions

Concepts Used:

Methods of Integration

Given below is the list of the different methods of integration that are useful in simplifying integration problems:

Integration by Parts:

 If f(x) and g(x) are two functions and their product is to be integrated, then the formula to integrate f(x).g(x) using by parts method is:

∫f(x).g(x) dx = f(x) ∫g(x) dx − ∫(f′(x) [ ∫g(x) dx)]dx + C

Here f(x) is the first function and g(x) is the second function.

Method of Integration Using Partial Fractions:

The formula to integrate rational functions of the form f(x)/g(x) is:

∫[f(x)/g(x)]dx = ∫[p(x)/q(x)]dx + ∫[r(x)/s(x)]dx

where

f(x)/g(x) = p(x)/q(x) + r(x)/s(x) and

g(x) = q(x).s(x)

Integration by Substitution Method

Hence the formula for integration using the substitution method becomes:

∫g(f(x)) dx = ∫g(u)/h(u) du

Integration by Decomposition

Reverse Chain Rule

This method of integration is used when the integration is of the form ∫g'(f(x)) f'(x) dx. In this case, the integral is given by,

∫g'(f(x)) f'(x) dx = g(f(x)) + C

Integration Using Trigonometric Identities