Question:

Write the Nernst equation and emf of the following cells at 298 K : 
(i) Mg(s) | Mg2+ (0.001M) || Cu2+(0.0001 M) | Cu(s) 
(ii) Fe(s) | Fe2+ (0.001M) || H+ (1M)|H2(g)(1bar) | Pt(s) 
(iii) Sn(s) | Sn2+(0.050 M) || H+ (0.020 M) | H2(g) (1 bar) | Pt(s) 
(iv) Pt(s) | Br2(l) | Br-  (0.010 M) || H+ (0.030 M) | H2(g) (1 bar) | Pt(s).

Updated On: Dec 23, 2024
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(i) For the given reaction, the Nernst equation can be given as:

\(E_{cell}\) = \(E^{\ominus}_{cell}\) - \(\frac{0.0591}{n}\)log\(\frac{[{Mg}^{2+}]}{[Cu^{2+}]}\)

= {0.34-(-2.36)}-\(\frac{0.0591}{2}\)log \(\frac{.001}{.0001}\)

= 2.7- \(\frac{0.0591}{2}\) log10

= 2.7 - 0.02955 

= 2.67 V (approximately)


(ii) For the given reaction, the Nernst equation can be given as:

\(E_{cell}\) =\(E^{\ominus}_{cell}\) - \(\frac{0.0591}{n}\) log \(\frac{[Fe^{2+}]}{[H^+]^2}\)

= {0-(-0.44)}- \(\frac{0.0591}{2}\) log \(\frac{0.0001}{1^2}\)

= 0.44-0.02955(-3)

= 0.52865 V

= 0.53  V (approximately)


(iii) For the given reaction, the Nernst equation can be given as:

\(E_{cell}\) =\(E^{\ominus}_{cell}\)\(\frac{0.0591}{n}\) log\(\frac{[Sn^{2+}]}{[H^+]^2}\)

= {0-(-0.14)}- \(\frac{0.0591}{2}\)log\(\frac{0.050}{(0.020)^2}\)

= 0.14-0.0295 \(\times\) log125

=0.14-0.62

=0.78 V

= 0.08  V (approximately)


 (iv) For the given reaction, the Nernst equation can be given as:

\(E_{cell}\)=\(E^{\ominus}_{cell}\)-\(\frac{0.0591}{n}\) log \(\frac{1}{[Br^-]^2[H^+]^2}\)

= (0-1.09)- \(\frac{0.0591}{2}\)log \(\frac{1}{(0.010)^2(0.030)^2}\)

= -1.09-0.02955 x log \(\frac{1}{0.000000009}\)

= -1.09-0.02955 x log \(\frac{1}{9 \times 10^{-8}}\)

= -1.09-0.02955 x log(1.11 \(\times\) 107)

= - 1.09 - 0.02955(0.0453+7)

= 1.09-0.208

=-1.298 V

Was this answer helpful?
10
2

Concepts Used:

Nernst Equation

This equation relates the equilibrium cell potential (also called the Nernst potential) to its concentration gradient across a membrane. If there is a concentration gradient for the ion across the membrane, an electric potential will form, and if selective ion channels exist the ion can cross the membrane.