Concept:
Magnetic field due to a current element is given by the Biot–Savart law:
\[
d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I \, d\mathbf{l} \times \mathbf{\hat{r}}}{r^2}
\]
Vector form:
\[
d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I \, (d\mathbf{l} \times \mathbf{r})}{r^3}
\]
Step 1: Given data.
Length of segment: \( dl = 1 \, \text{cm} = 10^{-2} \, \text{m} \)
Current: \( I = 10 \, \text{A} \)
Segment along +x direction:
\[
d\mathbf{l} = 10^{-2} \, \hat{i}
\]
Field point: \( (1,1,0) \)
Position vector:
\[
\mathbf{r} = \hat{i} + \hat{j}
\]
\[
r = \sqrt{1^2 + 1^2} = \sqrt{2}
\]
Step 2: Compute cross product.
\[
d\mathbf{l} \times \mathbf{r}
= (10^{-2} \hat{i}) \times (\hat{i} + \hat{j})
\]
Using cross products:
\[
\hat{i} \times \hat{i} = 0, \quad \hat{i} \times \hat{j} = \hat{k}
\]
\[
d\mathbf{l} \times \mathbf{r} = 10^{-2} \hat{k}
\]
Step 3: Apply Biot–Savart law.
\[
d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I (10^{-2} \hat{k})}{(\sqrt{2})^3}
\]
\[
(\sqrt{2})^3 = 2\sqrt{2}
\]
\[
d\mathbf{B} = \frac{10^{-7} \times 10 \times 10^{-2}}{2\sqrt{2}} \hat{k}
\]
Step 4: Simplify.
\[
10^{-7} \times 10 \times 10^{-2} = 10^{-8}
\]
\[
\mathbf{B} = \frac{10^{-8}}{2\sqrt{2}} \hat{k}
= \frac{10^{-8}}{2.828} \hat{k}
\]
\[
\mathbf{B} \approx 3.5 \times 10^{-9} \, \hat{k} \, \text{T}
\]
Final Answers:
Vector expression (Biot–Savart law):
\[
d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I (d\mathbf{l} \times \mathbf{r})}{r^3}
\]
Magnetic field at \( (1,1,0) \):
\[
\mathbf{B} \approx 3.5 \times 10^{-9} \, \hat{k} \, \text{T}
\]