Step 1: Recall the general form of an arithmetic progression (A.P.).
An A.P. is given by:
\[
a, \; a + d, \; a + 2d, \; a + 3d, \; \ldots
\]
Step 2: Substitute the given values.
Given \(a = 10\) and \(d = 5\), we get:
\[
10, \; 10 + 5, \; 10 + 2(5), \; 10 + 3(5), \; \ldots
\]
Step 3: Simplify the terms.
\[
10, \; 15, \; 20, \; 25, \; 30, \ldots
\]
Step 4: Conclusion.
Thus, the required arithmetic progression is:
\[
10, \; 15, \; 20, \; 25, \; 30, \ldots
\]
Final Answer:
\[
\boxed{10, \; 15, \; 20, \; 25, \; 30, \ldots}
\]