Step 1: Recall the general form of an arithmetic progression (A.P.).
An A.P. is given by: \[ a, \; a + d, \; a + 2d, \; a + 3d, \; \ldots \] Step 2: Substitute the given values.
Given \(a = 10\) and \(d = 5\), we get: \[ 10, \; 10 + 5, \; 10 + 2(5), \; 10 + 3(5), \; \ldots \] Step 3: Simplify the terms.
\[ 10, \; 15, \; 20, \; 25, \; 30, \ldots \] Step 4: Conclusion.
Thus, the required arithmetic progression is: \[ 10, \; 15, \; 20, \; 25, \; 30, \ldots \] Final Answer: \[ \boxed{10, \; 15, \; 20, \; 25, \; 30, \ldots} \]