Step 1: Recall the Michaelis-Menten equation.
The Michaelis-Menten equation is:
\[
v_0 = \frac{V_{{max}} [S]}{K_m + [S]},
\]
where:
\( v_0 \) is the initial velocity,
\( V_{{max}} \) is the maximum velocity,
\( [S] \) is the substrate concentration,
\( K_m \) is the Michaelis constant.
The ratio \( v_0 / V_{{max}} \) is given by:
\[
\frac{v_0}{V_{{max}}} = \frac{[S]}{K_m + [S]}.
\]
Step 2: Substitute \( [S] = 20 \times K_m \).
Substitute \( [S] = 20 \times K_m \) into the equation:
\[
\frac{v_0}{V_{{max}}} = \frac{20 \times K_m}{K_m + 20 \times K_m} = \frac{20}{1 + 20} = \frac{20}{21}.
\]
Step 3: Calculate the value.
\[
\frac{v_0}{V_{{max}}} = \frac{20}{21} \approx 0.95.
\]
Thus, the ratio \( v_0 / V_{{max}} \) is \( \boxed{0.95} \).