Initially when the bus is at rest our body also follows the same state. But all of a sudden when the bus starts to move the lower part of our body tends to move with the motion of the bus, but the upper part rejects this state of motion and continues to be in a state of rest. This results in a sudden jerk backwards when a bus moves. Also, a person standing in a bus will be in a state of motion, and when the brakes are applied the lower part of our body comes to the state of rest but our upper part is in a state of motion. Hence, we tend to fall forward when the bus applies brakes.
(Street Plan) : A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.
All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines. There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North - South direction and 5th in the East - West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:
(i) how many cross - streets can be referred to as (4, 3).
(ii) how many cross - streets can be referred to as (3, 4).
The laws of motion, which are the keystone of classical mechanics, are three statements that defined the relationships between the forces acting on a body and its motion. They were first disclosed by English physicist and mathematician Isaac Newton.
Newton’s 1st law states that a body at rest or uniform motion will continue to be at rest or uniform motion until and unless a net external force acts on it.
Newton's 2nd law of motion deals with the relation between force and acceleration. According to the second law of motion, the acceleration of an object as built by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
Newton's 3rd law of motion states when a body applies a force on another body that there is an equal and opposite reaction for every action.