Step 1: Understanding the Concept:
The question asks which of the four types of objects, when arranged as shown in the main image, forms a perfect circle. The options A, B, C, and D correspond to the individual shapes: A (white octagon - although in the diagram they are circles), B (teal crescent), C (pink pentagon), and D (green square). We must inspect the rings formed by each type of object in the main diagram and determine which ring has an outline that is a perfect circle.
Step 2: Detailed Explanation:
Let's analyze the circular patterns formed by each set of shapes, from the inside out.
Innermost Ring (White Circles): This ring is composed of individual white circles. While their centers lie on a perfect circle, the overall boundary of the ring is scalloped due to the gaps between the circles. It does not form a solid, perfect circle.
Second Ring (Green Squares - D): This ring is made of green squares. The inner and outer boundaries of this ring are jagged, following the straight edges of the squares. It is not a perfect circle.
Third Ring (Pink Pentagons - C): Similar to the squares, this ring is composed of pentagons. Its inner and outer boundaries are polygonal and not smooth circles.
Outermost Ring (Teal Crescents - B): This ring is made of crescent-shaped objects. These objects are designed to fit together perfectly along a circular path. Their inner boundary forms a perfect circle, and critically, their outer boundary also forms a continuous, smooth, perfect circle.
Step 3: Final Answer:
The arrangement of the teal crescent objects (labeled B in the options) is the only one that results in a pattern with a perfect circular outer boundary.