Question:

Which of the following statements are true?
A. If  \(x : y = 3 : 1\) then \(x ^3 − y ^3 = \frac{10}{11}\)
B. If \(x=y+12,x:y=3:2\) and \(z:y=1:3\),then \(z+x=44\)
C. If \(3x=8y\) and \(5y=9z\),then \(\frac{x}{z}=\frac{72}{15}\)
Choose the most appropriate answer from the options given below:

Updated On: Dec 30, 2025
  • A and B only
  • A and C only
  • B and C only
  •  A, B and C

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

 To determine which statements are true, let's analyze each statement individually: 

  1. Statement A: If \(x : y = 3 : 1\) then \(x^3 − y^3 = \frac{10}{11}\)
    • Given: \(x : y = 3 : 1\)
    • Let \(x = 3k\) and \(y = k\)
    • Then, \(x^3 - y^3 = (3k)^3 - (k)^3 = 27k^3 - k^3 = 26k^3\)
    • We need \(26k^3 = \frac{10}{11}\), which is not possible for any real value of \(k\). Therefore, Statement A is false.
  2. Statement B: If \(x=y+12\)\(x:y=3:2\), and \(z:y=1:3\), then \(z+x=44\)
    • Given: \(x = y + 12\) and \(x : y = 3 : 2\)
    • Let \(x = 3p\) and \(y = 2p\)
    • From \(x = y + 12\), we have \(3p = 2p + 12\). Solving gives \(p = 12\)
    • Thus, \(x = 3 \times 12 = 36\) and \(y = 2 \times 12 = 24\)
    • For \(z : y = 1 : 3\)\(z = \frac{1}{3}y = \frac{1}{3} \times 24 = 8\)
    • Therefore, \(z + x = 8 + 36 = 44\), So, Statement B is true.
  3. Statement C: If \(3x = 8y\) and \(5y = 9z\), then \(\frac{x}{z} = \frac{72}{15}\)
    • Given: \(3x = 8y\) implies \(x = \frac{8}{3}y\)
    • Also, \(5y = 9z\) implies \(y = \frac{9}{5}z\)
    • Substitute the value of \(y\) in \(x = \frac{8}{3}y\), we get \(x = \frac{8}{3} \times \frac{9}{5}z = \frac{72}{15}z\)
    • This implies \(\frac{x}{z} = \frac{72}{15}\), which means Statement C is true.

Therefore, the correct answer is: B and C only.

Was this answer helpful?
0
0

Questions Asked in CMAT exam

View More Questions