Question:

If \(5^a\) = \(9^b\) = 2025, then the value of \(\frac{ab}{a+b}\)= ____.

Updated On: Dec 30, 2025
  • 4
  • 3
  • 2
  • 1
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

 We are given the equation \(5^a = 9^b = 2025\), and we need to find the value of \(\frac{ab}{a+b}\).

  1. First, express 2025 in its prime factors: \(2025 = 5^2 \times 9^2 = (5 \times 9)^2 = 45^2\)
  2. Since \(5^a = 2025\), we can equate the powers: \(5^a = 45^2\)\)
  3. Similarly, for \(9^b = 2025\): \(9^b = 45^2\)\)
  4. Now, compute \(\frac{ab}{a+b}\): 
    Substitute the expressions for \(a\) and \(b\): \(\frac{ab}{a+b} = \frac{(2 \log_5{45})(2 \log_9{45})}{2 \log_5{45} + 2 \log_9{45}}\)
    Simplifying: \(= \frac{4 \log_5{45} \log_9{45}}{2(\log_5{45} + \log_9{45})}\)
    \(= 2 \cdot \frac{\log_5{45} \log_9{45}}{\log_5{45} + \log_9{45}}\)
  5. Note that the expression simplifies to: \(\frac{\log_5{45} \log_9{45}}{\log_5{45} + \log_9{45}} = 1\)
    Therefore: \(\frac{ab}{a+b} = 2 \times 1 = 2\)

Thus, the correct answer is 2.

Was this answer helpful?
0
7