A conducting square loop initially lies in the $ XZ $ plane with its lower edge hinged along the $ X $-axis. Only in the region $ y \geq 0 $, there is a time dependent magnetic field pointing along the $ Z $-direction, $ \vec{B}(t) = B_0 (\cos \omega t) \hat{k} $, where $ B_0 $ is a constant. The magnetic field is zero everywhere else. At time $ t = 0 $, the loop starts rotating with constant angular speed $ \omega $ about the $ X $ axis in the clockwise direction as viewed from the $ +X $ axis (as shown in the figure). Ignoring self-inductance of the loop and gravity, which of the following plots correctly represents the induced e.m.f. ($ V $) in the loop as a function of time:
A conducting square loop of side $ L $, mass $ M $, and resistance $ R $ is moving in the $ XY $ plane with its edges parallel to the $ X $ and $ Y $ axes. The region $ y \geq 0 $ has a uniform magnetic field, $ \vec{B} = B_0 \hat{k} $. The magnetic field is zero everywhere else. At time $ t = 0 $, the loop starts to enter the magnetic field with an initial velocity $ v_0 \hat{j} \, \text{m/s} $, as shown in the figure. Considering the quantity $ K = \frac{B_0^2 L^2}{RM} $ in appropriate units, ignoring self-inductance of the loop and gravity, which of the following statements is/are correct:
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : 02 is liberated in the non-cyclic photophosphorylation.
Reason (R) : Liberation of oxygen is due to photolysis of water.
In the light of the above statements, choose the correct answer from the options given below
Given below are two statements, one is labelled as Assertion A and the other is labelled as Reason R
Assertion (A) : The Cro-Magnon man was the direct ancestor of the living modern man.
Reason (R) : Cro-Magnon man had slightly prognathous face.
In the light of the above statements, choose the correct answer from the options given below
Electromagnetic Induction is a current produced by the voltage production due to a changing magnetic field. This happens in one of the two conditions:-
The electromagnetic induction is mathematically represented as:-
e=N × d∅.dt
Where