Question:

Which of the following is a factor of the polynomial x3+x2-17x+15?

Updated On: Apr 5, 2025
  • x+3
  • x-3
  • 2x+3
  • 2x-3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Recall the Factor Theorem.

The Factor Theorem states that if (xc) (x - c) is a factor of a polynomial P(x) P(x) , then P(c)=0 P(c) = 0 . To check if any of the given options is a factor, we substitute the corresponding value of c c into P(x) P(x) and verify if P(c)=0 P(c) = 0 .

Step 2: Test each option.

(1) x+3 x + 3 :

If x+3 x + 3 is a factor, then c=3 c = -3 . Substitute x=3 x = -3 into P(x) P(x) :

P(3)=(3)3+(3)217(3)+15=27+9+51+15=48. P(-3) = (-3)^3 + (-3)^2 - 17(-3) + 15 = -27 + 9 + 51 + 15 = 48.

Since P(3)0 P(-3) \neq 0 , x+3 x + 3 is not a factor.

(2) x3 x - 3 :

If x3 x - 3 is a factor, then c=3 c = 3 . Substitute x=3 x = 3 into P(x) P(x) :

P(3)=(3)3+(3)217(3)+15=27+951+15=0. P(3) = (3)^3 + (3)^2 - 17(3) + 15 = 27 + 9 - 51 + 15 = 0.

Since P(3)=0 P(3) = 0 , x3 x - 3 is a factor.

(3) 2x+3 2x + 3 :

If 2x+3 2x + 3 is a factor, then c=32 c = -\frac{3}{2} . Substitute x=32 x = -\frac{3}{2} into P(x) P(x) :

P(32)=(32)3+(32)217(32)+15. P\left(-\frac{3}{2}\right) = \left(-\frac{3}{2}\right)^3 + \left(-\frac{3}{2}\right)^2 - 17\left(-\frac{3}{2}\right) + 15.

Simplify step-by-step:

P(32)=278+94+512+15. P\left(-\frac{3}{2}\right) = -\frac{27}{8} + \frac{9}{4} + \frac{51}{2} + 15.

Convert all terms to have a denominator of 8:

P(32)=278+188+2048+1208. P\left(-\frac{3}{2}\right) = -\frac{27}{8} + \frac{18}{8} + \frac{204}{8} + \frac{120}{8}.

P(32)=27+18+204+1208=3158. P\left(-\frac{3}{2}\right) = \frac{-27 + 18 + 204 + 120}{8} = \frac{315}{8}.

Since P(32)0 P\left(-\frac{3}{2}\right) \neq 0 , 2x+3 2x + 3 is not a factor.

(4) 2x3 2x - 3 :

If 2x3 2x - 3 is a factor, then c=32 c = \frac{3}{2} . Substitute x=32 x = \frac{3}{2} into P(x) P(x) :

P(32)=(32)3+(32)217(32)+15. P\left(\frac{3}{2}\right) = \left(\frac{3}{2}\right)^3 + \left(\frac{3}{2}\right)^2 - 17\left(\frac{3}{2}\right) + 15.

Simplify step-by-step:

P(32)=278+94512+15. P\left(\frac{3}{2}\right) = \frac{27}{8} + \frac{9}{4} - \frac{51}{2} + 15.

Convert all terms to have a denominator of 8:

P(32)=278+1882048+1208. P\left(\frac{3}{2}\right) = \frac{27}{8} + \frac{18}{8} - \frac{204}{8} + \frac{120}{8}.

P(32)=27+18204+1208=398. P\left(\frac{3}{2}\right) = \frac{27 + 18 - 204 + 120}{8} = \frac{-39}{8}.

Since P(32)0 P\left(\frac{3}{2}\right) \neq 0 , 2x3 2x - 3 is not a factor.

Final Answer: The correct factor is x3 \mathbf{x - 3} , which corresponds to option (2) \mathbf{(2)} .

Was this answer helpful?
0
0