Alcohols undergo a number of reactions involving the cleavage of C – OH bond. However, phenols do not undergo reactions involving the cleavage of C – OH bond. Alcohols are weaker acids than water. Alcohols react with halogen acids to form the corresponding haloaklanes. Phenols are stronger acids than alcohols. A charac- teristic feature of phenols is that they undergo electrophilic substitution reactions such as halogenation, nitration, etc. Since –OH group is a strong activating group, phenol gives trisubstituted products during halogenation, nitration, etc.
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
Alcohol is a derivative of water (H2O) that has one, two, or more hydroxyl groups that are attached to a carbon atom of a hydrocarbon chain (an alkyl group). It is one of the most common organic compounds used in sweeteners, fragrances, and medicine.
Read More: Types of Alcohol