Let \(z = -\frac{1}{2} + \frac{i\sqrt{3}}{2}\), then
\[
z^2 = \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^2 = \frac{1}{4} - i\sqrt{3} \cdot \frac{1}{2} - \frac{3}{4} = -\frac{1}{2} - \frac{i\sqrt{3}}{2}
\]
Now,
\[
\overline{z} = -\frac{1}{2} - \frac{i\sqrt{3}}{2} = z^2
\]
So, \(z\) is conjugate of \(z^2\).