Question:

Which of the following complex numbers is conjugate to its square?

Updated On: Mar 30, 2025
  • \(1 - i\sqrt{3}\)
  • \(-1 - i\sqrt{3}\)
  • \(\frac{1}{2} - \frac{i\sqrt{3}}{2}\)
  • \(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation


Let \(z = -\frac{1}{2} + \frac{i\sqrt{3}}{2}\), then \[ z^2 = \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^2 = \frac{1}{4} - i\sqrt{3} \cdot \frac{1}{2} - \frac{3}{4} = -\frac{1}{2} - \frac{i\sqrt{3}}{2} \] Now, \[ \overline{z} = -\frac{1}{2} - \frac{i\sqrt{3}}{2} = z^2 \] So, \(z\) is conjugate of \(z^2\).
Was this answer helpful?
0
0