Step 1: Recall first law of thermodynamics for rising air.
The dry adiabatic lapse rate is:
\[
\Gamma_d = \frac{g}{c_p}
\]
where $c_p \approx 1005 \, \text{J/kg/K}$.
Step 2: Calculate cooling rate due to adiabatic ascent.
Vertical velocity:
\[
w = 2 \, \text{cm/s} = 0.02 \, \text{m/s}
\]
Cooling rate per unit time:
\[
\frac{dT}{dt} = - \Gamma_d . w = - \frac{g}{c_p} . w
\]
\[
= - \frac{9.8}{1005} \times 0.02 = -0.000195 \, K/s
\]
Step 3: Convert to heating rate per unit mass.
Energy required to offset cooling:
\[
Q = c_p . \left|\frac{dT}{dt}\right| = 1005 \times 0.000195 = 0.196 \, J \, s^{-1} \, kg^{-1}
\]
Final Answer:
\[
\boxed{0.196 \, J \, s^{-1} \, kg^{-1}}
\]