Given:
- Initial voltage across capacitor, \( V = 95 \, V \)
- Initial capacitance, \( C \)
- Dielectric slab thickness, \( t = 2 \, \text{mm} = 2 \times 10^{-3} \, \text{m} \)
- Increase in plate separation, \( d_{inc} = 1.6 \, \text{mm} = 1.6 \times 10^{-3} \, \text{m} \)
- The potential difference \( V \) remains constant.
We need to find the dielectric constant \( K \) of the slab.
Step 1: Let the original plate separation be \( d \).
After inserting the dielectric slab and increasing plate separation, the new separation becomes:
\[
d' = d + d_{inc} = d + 1.6 \times 10^{-3}
\]
Step 2: The capacitor now consists of two capacitors in series:
- Capacitor 1 with dielectric slab of thickness \( t = 2 \times 10^{-3} \) m and dielectric constant \( K \).
- Capacitor 2 with air gap of thickness \( d' - t = (d + 1.6 \times 10^{-3}) - 2 \times 10^{-3} = d - 0.4 \times 10^{-3} \) m.
Step 3: Capacitance of dielectric slab part:
\[
C_1 = \frac{K \varepsilon_0 A}{t}
\]
Capacitance of air gap part:
\[
C_2 = \frac{\varepsilon_0 A}{d' - t}
\]
where \( A \) is the plate area and \( \varepsilon_0 \) is permittivity of free space.
Step 4: Total capacitance \( C' \) after insertion:
For series capacitors,
\[
\frac{1}{C'} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{t}{K \varepsilon_0 A} + \frac{d' - t}{\varepsilon_0 A} = \frac{t}{K \varepsilon_0 A} + \frac{d' - t}{\varepsilon_0 A}
\]
\[
\Rightarrow C' = \frac{\varepsilon_0 A}{\frac{t}{K} + (d' - t)} = \frac{\varepsilon_0 A}{d' + t \left(\frac{1}{K} - 1 \right)}
\]
Step 5: Initially, the capacitance was:
\[
C = \frac{\varepsilon_0 A}{d}
\]
Step 6: The voltage remains constant, and charge \( Q = C V \), so charge is proportional to capacitance.
We assume the same applied voltage and need the ratio of new capacitance \( C' \) to initial capacitance \( C \). The problem implies \( C' = C \), meaning:
\[
C' = C \Rightarrow \frac{\varepsilon_0 A}{d' + t \left(\frac{1}{K} - 1\right)} = \frac{\varepsilon_0 A}{d}
\]
Simplify:
\[
d' + t \left(\frac{1}{K} - 1 \right) = d
\]
Step 7: Substitute \( d' = d + 1.6 \times 10^{-3} \) m:
\[
d + 1.6 \times 10^{-3} + t \left( \frac{1}{K} - 1 \right) = d
\]
\[
1.6 \times 10^{-3} + 2 \times 10^{-3} \left( \frac{1}{K} - 1 \right) = 0
\]
\[
2 \times 10^{-3} \left( \frac{1}{K} - 1 \right) = -1.6 \times 10^{-3}
\]
\[
\frac{1}{K} - 1 = -\frac{1.6 \times 10^{-3}}{2 \times 10^{-3}} = -0.8
\]
\[
\frac{1}{K} = 1 - 0.8 = 0.2
\]
\[
K = \frac{1}{0.2} = 5
\]
Therefore, the dielectric constant of the material is:
\[
\boxed{5.0}
\]