Step 1: Known Information.
Current through the inductor: \( I = 4 \, \text{mA} = 4 \times 10^{-3} \, \text{A} \)
Flux linked with the inductor: \( \Phi = 32 \times 10^{-6} \, \text{Tm}^2 \)
Energy stored in an inductor is given by:
\[
U = \frac{1}{2} L I^2
\]
where \( L \) is the inductance of the inductor.
Step 2: Relate Flux and Inductance.
The flux linked with the inductor is related to the inductance and current by:
\[
\Phi = L I
\]
Solve for \( L \):
\[
L = \frac{\Phi}{I}
\]
Substitute the given values:
\[
L = \frac{32 \times 10^{-6}}{4 \times 10^{-3}} = 8 \times 10^{-3} \, \text{H}
\]
Step 3: Calculate the Energy Stored.
Using the formula for energy stored in an inductor:
\[
U = \frac{1}{2} L I^2
\]
Substitute \( L = 8 \times 10^{-3} \, \text{H} \) and \( I = 4 \times 10^{-3} \, \text{A} \):
\[
U = \frac{1}{2} \cdot 8 \times 10^{-3} \cdot (4 \times 10^{-3})^2
\]
Simplify:
\[
U = \frac{1}{2} \cdot 8 \times 10^{-3} \cdot 16 \times 10^{-6}
\]
\[
U = 4 \times 10^{-3} \cdot 16 \times 10^{-6}
\]
\[
U = 64 \times 10^{-9} \, \text{J}
\]
Final Answer: \( \boxed{64 \times 10^{-9} \, \text{J}} \)