Step 1: Understanding the Problem
We are asked to determine the day of the week for the date 15th August, 1947.
Step 2: Key Formula (Zeller's Congruence)
Zeller's Congruence is a formula used to calculate the day of the week for any given date. The formula is:
\[ h = \left(q + \left\lfloor \frac{13(m+1)}{5} \right\rfloor + K + \left\lfloor \frac{K}{4} \right\rfloor + \left\lfloor \frac{J}{4} \right\rfloor - 2J \right) \mod 7 \] where:
Step 3: Applying the Formula
We need to determine the values for the date 15th August, 1947. Here are the details:
Now, substitute these values into the formula:
\[ h = \left(15 + \left\lfloor \frac{13(8+1)}{5} \right\rfloor + 47 + \left\lfloor \frac{47}{4} \right\rfloor + \left\lfloor \frac{19}{4} \right\rfloor - 2 \times 19 \right) \mod 7 \] Simplifying step by step: \[ h = \left(15 + \left\lfloor \frac{13 \times 9}{5} \right\rfloor + 47 + \left\lfloor \frac{47}{4} \right\rfloor + \left\lfloor \frac{19}{4} \right\rfloor - 38 \right) \mod 7 \] \[ h = \left(15 + \left\lfloor \frac{117}{5} \right\rfloor + 47 + \left\lfloor 11.75 \right\rfloor + \left\lfloor 4.75 \right\rfloor - 38 \right) \mod 7 \] \[ h = \left(15 + 23 + 47 + 11 + 4 - 38 \right) \mod 7 \] \[ h = \left(62 \right) \mod 7 \] \[ h = 62 \mod 7 = 6 \] Therefore, the value of \( h = 6 \), which corresponds to **Friday**.
Step 4: Final Answer
The day on 15th August, 1947 was Friday.