What mass of 75% pure CaCO3 will be required to neutralize 50 ml of 0.5M HCL solution according to the following reaction? \[ {CaCO}_3 + 2{HCl} \to {CaCl}_2 + {CO}_2 + {H}_2{O} \]
- Moles of HCl = \( 0.5 \times 0.050 = 0.025 \) moles
- From the reaction, 1 mole of CaCO3 reacts with 2 moles of HCl.
- Moles of CaCO3 required = \( \frac{0.025}{2} = 0.0125 \) moles
- Molar mass of CaCO3 = 100 g/mol, so mass of CaCO3 required = \( 0.0125 \times 100 = 1.25 \) g
- For 75\% pure CaCO3, mass required = \( \frac{1.25}{0.75} = 1.67 \) g
Conclusion: The mass of 75% pure CaCO3 required is 3.35 g, as given by option (B).
Reactant ‘A’ underwent a decomposition reaction. The concentration of ‘A’ was measured periodically and recorded in the table given below:
Based on the above data, predict the order of the reaction and write the expression for the rate law.
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.
The bulking of the sand is increased in volume from 20% to 40% of various sand and moisture content ranges from ……… to ……….. percent.
