Step 1: Mean Area Metho(D)
The volume of the trapezoidal tank can be calculated using the mean area metho(D) The formula is:
\[
V = h \times \left( \frac{A_1 + A_2}{2} \right)
\]
Where:
- \(h\) = height of the tank = 6 m
- \(A_1\) = area of the top = \(6 \times 4 = 24 \, \text{m}^2\)
- \(A_2\) = area of the bottom = \(4 \times 2 = 8 \, \text{m}^2\)
Step 2: Calculating Volume.
\[
V = 6 \times \left( \frac{24 + 8}{2} \right) = 6 \times 16 = 96 \, \text{m}^3
\]
Thus, the correct volume is \( 96 \, \text{m}^3 \), so option (3) is correct.
Final Answer:
\[
\boxed{96 \, \text{m}^3}
\]