Each term is of the form $\frac{1}{n(n+1)}$. We use partial fractions:
$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$
Thus, the entire sum becomes:
$\left( \frac{1}{1} - \frac{1}{2} \right) + \left( \frac{1}{2} - \frac{1}{3} \right) + \left( \frac{1}{3} - \frac{1}{4} \right) + + \left( \frac{1}{100} - \frac{1}{101} \right)$
Now, this is a telescoping series — most terms cancel out:
$= \frac{1}{1} - \frac{1}{101} = 1 - \frac{1}{101} = \frac{100}{101}$
So the final answer is (C) $\frac{100}{101}$