Solution:
Step 1 (Formula for the sum of infinite GP).
If \(|r| < 1\), the sum to infinity is:
\[
S_{\infty} = \frac{a}{1 - r}
\]
where \(a\) = first term, \(r\) = common ratio.
Step 2 (Substitute given values).
Here \(a = 1\), \(r = \frac{1}{2}\):
\[
S_{\infty} = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2.
\]
Step 3 (Interpretation).
The sum converges because \(|r| = \frac{1}{2} < 1\).
This means adding all terms forever (1, 0.5, 0.25, 0.125, ...) approaches exactly \(2\).
\[
{2}
\]