Question:

What is the remainder when $1!+2!+3!+\cdots+100!$ is divided by $7$? 

Show Hint

For factorial sums mod a prime $p$, everything from $p!$ onward is $0 \pmod p$.
Updated On: Aug 20, 2025
  • 0
  • 5
  • 3
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


For $n\ge 7$, $n!$ is a multiple of $7$, so it contributes $0\pmod 7$. Hence \[ 1!+2!+\cdots+100!\equiv 1!+2!+3!+4!+5!+6!\pmod 7. \] Compute mod $7$: $1!\equiv1$,$2!\equiv2$, $3!\equiv6$,$4!=24\equiv3$, $5!=120\equiv1$, $6!=720\equiv6$. Sum $=1+2+6+3+1+6=19\equiv \boxed{5}\ (\bmod 7)$. 

Was this answer helpful?
0
0