Step 1: The Nernst equation is used to calculate the electrode potential:
\[
E = E^\circ - \frac{0.0591}{n} \log \left( \frac{[\text{Cu}^{2+}]}{[\text{Cu}]}\right)
\]
where \( E^\circ \) is the standard electrode potential (0.34 V for Cu), \( n \) is the number of electrons transferred (2 for Cu), and \( [\text{Cu}^{2+}] \) is the concentration of \( \text{Cu}^{2+} \).
Step 2: Substituting the values:
\[
E = 0.34 - \frac{0.0591}{2} \log \left( \frac{1}{10^{-2}} \right)
\]
\[
E = 0.34 - \frac{0.0591}{2} \log (100)
\]
\[
E = 0.34 - \frac{0.0591}{2} \times 2
\]
\[
E = 0.34 - 0.0591 = 0.281
\]
Thus, the electrode potential is 0.281 V.