Step 1: The Nernst equation is used to calculate the electrode potential: \[ E = E^\circ - \frac{0.0591}{n} \log \left( \frac{[\text{Cu}^{2+}]}{[\text{Cu}]}\right) \] where \( E^\circ \) is the standard electrode potential (0.34 V for Cu), \( n \) is the number of electrons transferred (2 for Cu), and \( [\text{Cu}^{2+}] \) is the concentration of \( \text{Cu}^{2+} \).
Step 2: Substituting the values: \[ E = 0.34 - \frac{0.0591}{2} \log \left( \frac{1}{10^{-2}} \right) \] \[ E = 0.34 - \frac{0.0591}{2} \log (100) \] \[ E = 0.34 - \frac{0.0591}{2} \times 2 \] \[ E = 0.34 - 0.0591 = 0.281 \] Thus, the electrode potential is 0.281 V.
For the given cell: \[ {Fe}^{2+}(aq) + {Ag}^+(aq) \to {Fe}^{3+}(aq) + {Ag}(s) \] The standard cell potential of the above reaction is given. The standard reduction potentials are given as: \[ {Ag}^+ + e^- \to {Ag} \quad E^\circ = x \, {V} \] \[ {Fe}^{2+} + 2e^- \to {Fe} \quad E^\circ = y \, {V} \] \[ {Fe}^{3+} + 3e^- \to {Fe} \quad E^\circ = z \, {V} \] The correct answer is:
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).