Step 1: The Nernst equation is used to calculate the electrode potential: \[ E = E^\circ - \frac{0.0591}{n} \log \left( \frac{[\text{Cu}^{2+}]}{[\text{Cu}]}\right) \] where \( E^\circ \) is the standard electrode potential (0.34 V for Cu), \( n \) is the number of electrons transferred (2 for Cu), and \( [\text{Cu}^{2+}] \) is the concentration of \( \text{Cu}^{2+} \).
Step 2: Substituting the values: \[ E = 0.34 - \frac{0.0591}{2} \log \left( \frac{1}{10^{-2}} \right) \] \[ E = 0.34 - \frac{0.0591}{2} \log (100) \] \[ E = 0.34 - \frac{0.0591}{2} \times 2 \] \[ E = 0.34 - 0.0591 = 0.281 \] Thus, the electrode potential is 0.281 V.
Match the following: