What is the dimension of
\[
\frac{M B}{K T}
\]
where \( M \) represents magnetic moment, \( K \) represents the Boltzmann constant, \( B \) represents the magnetic field, and \( T \) represents temperature?
Show Hint
When dealing with dimensions, make sure to break down each quantity into its fundamental dimensions (Mass, Length, Time, etc.) and use dimensional analysis to simplify the expression.
The dimensions of each quantity are as follows:
- \( M \) (magnetic moment) has the dimension of \( \text{[M]} \cdot \text{[L]}^2 \cdot \text{[T]}^{-1} \)
- \( B \) (magnetic field) has the dimension of \( \text{[M]} \cdot \text{[T]}^{-2} \cdot \text{[I]}^{-1} \)
- \( K \) (Boltzmann constant) has the dimension of \( \text{[M]} \cdot \text{[L]}^2 \cdot \text{[T]}^{-2} \cdot \text{[K]}^{-1} \)
- \( T \) (temperature) has the dimension of \( \text{[K]} \)
Thus, the overall dimension of \( \frac{M B}{K T} \) is:
\[
\frac{\text{[M]} \cdot \text{[L]}^2 \cdot \text{[T]}^{-1} \cdot \text{[M]} \cdot \text{[T]}^{-2} \cdot \text{[I]}^{-1}}{\text{[M]} \cdot \text{[L]}^2 \cdot \text{[T]}^{-2} \cdot \text{[K]}^{-1} \cdot \text{[K]}}
\]
Simplifying, we get:
\[
\text{[M]} \cdot \text{[K]}^{-1}
\]