At a given temperature and pressure, the equilibrium constant values for the equilibria are given below:
$ 3A_2 + B_2 \rightleftharpoons 2A_3B, \, K_1 $
$ A_3B \rightleftharpoons \frac{3}{2}A_2 + \frac{1}{2}B_2, \, K_2 $
The relation between $ K_1 $ and $ K_2 $ is:
For the reaction: $A_2(g) \rightleftharpoons B_2(g)$
The equilibrium constant $K_c$ is given as 99.0. In a 1 L closed flask, two moles of $B_2(g)$ is heated to $T(K)$. What is the concentration of $B_2(g)$ (in mol L$^{-1}$) at equilibrium?
At equilibrium for the reaction $ A_2 (g) + B_2 (g) \rightleftharpoons 2AB (g) $, the concentrations of $ A_2 $, $ B_2 $, and $ AB $ respectively are $ 1.5 \times 10^{-3} M $, $ 2.1 \times 10^{-3} M $, and $ 1.4 \times 10^{-3} M $. What will be $ K_p $ for the decomposition of $ AB $ at the same temperature?
Let $E_1$ and $E_2$ be two independent events of a random experiment such that
$P(E_1) = \frac{1}{2}, \quad P(E_1 \cup E_2) = \frac{2}{3}$.
Then match the items of List-I with the items of List-II:
The correct match is: