Question:

What is potential of platinum wire dipped into a solution of 0.1 M in $ S{{n}^{2+}} $ and 0.01 M in $ S{{n}^{4+}}? $

Updated On: Aug 11, 2024
  • $ {{E}_{0}} $
  • $ {{E}_{0}}+0.059 $
  • $ {{E}_{0}}+\frac{0.059}{2} $
  • $ {{E}_{0}}=\frac{0.059}{2} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

$ {{E}_{cell}}=E_{cell}^{o}+\frac{0.059}{n}\log \left[ \frac{\text{product}}{\text{reactant}} \right] $ $ S{{n}^{2+}}\xrightarrow{{}}S{{n}^{4+}}+2{{e}^{-}} $
$ \therefore $ $ n=2 $ Given $ [S{{n}^{2+}}]=0.1\,M,[S{{n}^{4+}}]=0.01\,M $
$ {{E}_{cell}}=E_{cell}^{o}+\frac{0.059}{2}\log \left[ \frac{S{{n}^{4+}}}{S{{n}^{2+}}} \right] $
$ =E_{cell}^{o}+\frac{0.059}{2}\log \left[ \frac{0.01}{0.1} \right] $
$ =E_{cell}^{o}+\frac{0.059}{2}\text{log}\,0.1 $
$ =E_{cell}^{o}+\frac{0.059}{2}\times -1 $
$ =E_{cell}^{o}-\frac{0.059}{2} $
Was this answer helpful?
2
2

Top Questions on Nernst Equation

View More Questions

Concepts Used:

Nernst Equation

This equation relates the equilibrium cell potential (also called the Nernst potential) to its concentration gradient across a membrane. If there is a concentration gradient for the ion across the membrane, an electric potential will form, and if selective ion channels exist the ion can cross the membrane.