According to the universal law of gravitation, the force of gravitation between two objects is given by
\(πΉ \,=\, \frac{πΊππ}{π^2}\)
(i) F is directly proportional to the masses of the objects. If the mass of one object is doubled, then the gravitational force will also get doubled.
(ii) F is inversely proportional to the square of the distances between the objects. If the distance is doubled, then the gravitational force becomes one-fourth of its original value.
Similarly, if the distance is tripled, then the gravitational force becomes one-ninth of its original value.
(iii) F is directly proportional to the product of masses of the objects. If the masses of both the objects are doubled, then the gravitational force becomes four times the original value.
A driver of a car travelling at \(52\) \(km \;h^{β1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?
| A | B |
|---|---|
| (i) broke out | (a) an attitude of kindness, a readiness to give freely |
| (ii) in accordance with | (b) was not able to tolerate |
| (iii) a helping hand | (c) began suddenly in a violent way |
| (iv) could not stomach | (d) assistance |
| (v) generosity of spirit | (e) persons with power to make decisions |
| (vi) figures of authority | (f) according to a particular rule, principle, or system |
ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig). Show that
(i) β ABE β β ACF
(ii) AB = AC, i.e., ABC is an isosceles triangle.
