Step 1: Bernoulli's equation with pump head.
The energy equation between Reservoir 1 and Reservoir 2 with a pump is:
\[
h_p = h_L + z_2 - z_1,
\]
where:
- \( h_p \) is the pump head,
- \( h_L \) is the head loss in the pipe,
- \( z_2 - z_1 = 50 \, \text{m} \) is the elevation difference.
Step 2: Calculate head loss \( h_L \).
The head loss in the pipe is given by:
\[
h_L = \frac{f L v^2}{D 2g},
\]
where:
- \( f = 0.06 \) (Darcy friction factor),
- \( L = 100 \, \text{m} \) (pipe length),
- \( D = 0.1 \, \text{m} \) (pipe diameter),
- \( v = \frac{Q}{A} = \frac{3.14 \times 10^{-2}}{\pi (0.1/2)^2} \approx 4 \, \text{m/s} \) (flow velocity).
Substitute values:
\[
h_L = \frac{0.06 \cdot 100 \cdot 4^2}{0.1 \cdot 2 \cdot 9.8} = \frac{96}{1.96} \approx 49 \, \text{m}.
\]
Step 3: Total pump head \( h_p \).
\[
h_p = h_L + z_2 - z_1 = 49 + 50 = 99 \, \text{m}.
\]
Step 4: Pump power.
The pump power is:
\[
P = \rho g Q h_p,
\]
where:
- \( \rho = 1000 \, \text{kg/m}^3 \),
- \( g = 9.8 \, \text{m/s}^2 \),
- \( Q = 3.14 \times 10^{-2} \, \text{m}^3/\text{s} \),
- \( h_p = 99 \, \text{m} \).
Substitute values:
\[
P = 1000 \cdot 9.8 \cdot 3.14 \times 10^{-2} \cdot 99 = 30506 \, \text{W} = 30.50 \, \text{kW}.
\]
Step 5: Conclusion.
The pump power is \( 30.50 \, \text{kW} \).