Concept:
When a weak base reacts partially with a strong acid, a buffer solution is formed.
For a basic buffer:
\[
\mathrm{pOH} = \mathrm{p}K_b + \log \left(\frac{[\text{Salt}]}{[\text{Base}]}\right)
\]
Also,
\[
\mathrm{pH} + \mathrm{pOH} = 14
\]
Step 1: Calculate pOH of the solution.
\[
\mathrm{pOH} = 14 - 9.25 = 4.75
\]
Step 2: Apply the Henderson equation.
\[
\mathrm{pOH} = \mathrm{p}K_b + \log \left(\frac{[\mathrm{NH_4Cl}]}{[\mathrm{NH_4OH}]}\right)
\]
Substitute values:
\[
4.75 = 4.75 + \log \left(\frac{[\mathrm{NH_4Cl}]}{[\mathrm{NH_4OH}]}\right)
\]
\[
\log \left(\frac{[\mathrm{NH_4Cl}]}{[\mathrm{NH_4OH}]}\right) = 0
\]
\[
\frac{[\mathrm{NH_4Cl}]}{[\mathrm{NH_4OH}]} = 1
\]
Step 3: Use stoichiometry to find volume ratio.
Let volume of decimolar \( \mathrm{NH_4OH} = x \) L
Let volume of decimolar \( \mathrm{HCl} = 1 \) L
Reaction:
\[
\mathrm{NH_4OH + HCl \rightarrow NH_4Cl + H_2O}
\]
Moles:
\[
\text{Moles of } \mathrm{NH_4OH} = 0.1x
\]
\[
\text{Moles of } \mathrm{HCl} = 0.1
\]
After reaction:
\[
\text{Moles of } \mathrm{NH_4Cl} = 0.1
\]
\[
\text{Remaining } \mathrm{NH_4OH} = 0.1x - 0.1
\]
Given ratio:
\[
\frac{0.1}{0.1x - 0.1} = 1
\]
\[
0.1x - 0.1 = 0.1
\]
\[
x = 2
\]
\[
\boxed{x = 2}
\]