Concept:
When a weak base reacts with a strong acid, the resulting solution behaves as a buffer consisting of the weak base and its conjugate acid.
For a basic buffer:
\[
\mathrm{pOH} = \mathrm{p}K_b + \log\left(\frac{\text{salt}}{\text{base}}\right)
\]
Also,
\[
\mathrm{pH} + \mathrm{pOH} = 14
\]
Step 1: Calculate pOH of the solution.
Given:
\[
\mathrm{pH} = 9.25
\]
\[
\mathrm{pOH} = 14 - 9.25 = 4.75
\]
Step 2: Write the buffer equation.
\[
4.75 = 7.75 + \log\left(\frac{\text{salt}}{\text{base}}\right)
\]
\[
\log\left(\frac{\text{salt}}{\text{base}}\right) = -3
\]
\[
\frac{\text{salt}}{\text{base}} = 10^{-3}
\]
Step 3: Express salt and base in terms of volumes.
Let volume of decimolar \( \mathrm{NH_4OH} = x \) L
Let volume of decimolar \( \mathrm{HCl} = 1 \) L
Reaction:
\[
\mathrm{NH_4OH + HCl \rightarrow NH_4Cl + H_2O}
\]
Moles:
\[
\text{Base initially} = 0.1x
\]
\[
\text{Acid added} = 0.1
\]
After reaction:
\[
\text{Salt} = 0.1
\]
\[
\text{Remaining base} = 0.1x - 0.1
\]
Step 4: Substitute into the ratio.
\[
\frac{0.1}{0.1x - 0.1} = 10^{-3}
\]
\[
\frac{1}{x - 1} = 10^{-3}
\]
\[
x - 1 = 1000
\]
\[
x = 1001
\]
\[
\boxed{x = 1001}
\]