Step 1: Recall the formula for angle between vectors.
For vectors $\vec p$ and $\vec q$, the tangent of the angle $\phi$ between them is:
\[
\tan\phi=\frac{|\vec p\times\vec q|}{\vec p\cdot\vec q}
\]
Step 2: Find $\tan\alpha$.
Angle $\alpha$ is between $\vec a$ and $(\vec a+\vec b)$:
\[
\tan\alpha=\frac{|\vec a\times(\vec a+\vec b)|}{\vec a\cdot(\vec a+\vec b)}
\]
Since $\vec a\times\vec a=0$,
\[
|\vec a\times(\vec a+\vec b)|=|\vec a\times\vec b|=ab\sin\theta
\]
Also,
\[
\vec a\cdot(\vec a+\vec b)=a^2+ab\cos\theta
\]
Hence,
\[
\tan\alpha=\frac{ab\sin\theta}{a^2+ab\cos\theta}
\]
Step 3: Find $\tan\beta$.
Angle $\beta$ is between $\vec a$ and $(\vec a-\vec b)$:
\[
\tan\beta=\frac{|\vec a\times(\vec a-\vec b)|}{\vec a\cdot(\vec a-\vec b)}
\]
\[
|\vec a\times(\vec a-\vec b)|=ab\sin\theta
\]
\[
\vec a\cdot(\vec a-\vec b)=a^2-ab\cos\theta
\]
Thus,
\[
\tan\beta=\frac{ab\sin\theta}{a^2-ab\cos\theta}
\]
Step 4: Add $\tan\alpha+\tan\beta$.
\[
\tan\alpha+\tan\beta
=
ab\sin\theta\left(\frac{1}{a^2+ab\cos\theta}+\frac{1}{a^2-ab\cos\theta}\right)
\]
\[
=
ab\sin\theta\cdot\frac{2a^2}{a^4-a^2b^2\cos^2\theta}
\]
\[
=
\frac{2b\sin\theta}{a^2-b^2\cos^2\theta}
\]
Final Answer:
\[
\boxed{\tan\alpha+\tan\beta=\frac{2b\sin\theta}{a^2-b^2\cos^2\theta}}
\]