Vectors $\vec a$ and $\vec b$ include an angle $\theta$ between them.
If $(\vec a+\vec b)$ and $(\vec a-\vec b)$ respectively subtend angles $\alpha$ and $\beta$ with $\vec a$, then $(\tan\alpha + \tan\beta)$ is:
Show Hint
For angle problems involving vectors:
Use $\displaystyle \tan\phi=\frac{|\vec p\times\vec q|}{\vec p\cdot\vec q}$
Cross products give $\sin$, dot products give $\cos$
Symmetry in $(\vec a+\vec b)$ and $(\vec a-\vec b)$ often simplifies algebra