Step 1: Construct the truth table.
We need to construct a truth table to show that the two expressions are logically equivalent. Consider the columns for \( p \), \( q \), \( p \leftrightarrow q \), and \( (p \land q) \lor (\sim p \land \sim q) \).
\[\begin{array}{|c|c|c|c|c|} \hline p & q & p \leftrightarrow q & (p \land q) \lor (\sim p \land \sim q) \\ \hline T & T & T & T \\ \hline T & F & F & F \\ \hline F & T & F & F \\ \hline F & F & T & T \\ \hline \end{array} \]
Step 2: Explanation.
The columns for \( p \leftrightarrow q \) and \( (p \land q) \lor (\sim p \land \sim q) \) are identical, which shows that the two expressions are logically equivalent.
Final Answer: \[ \boxed{\text{The two expressions are logically equivalent.}} \]
Solve the following assignment problem for minimization :
Find x if the cost of living index is 150 :