To find the negation of \( (p q) \land (q \lor \sim r) \), we will apply De Morgan's laws.
1. First, apply the negation to the entire expression:
\[
\sim \left( (p q) \land (q \lor \sim r) \right)
\]
According to De Morgan's law, the negation of a conjunction is the disjunction of the negations:
\[
\sim (p q) \lor \sim (q \lor \sim r).
\]
2. Now, apply De Morgan’s law to \( \sim (p q) \) and \( \sim (q \lor \sim r) \):
- \( \sim (p q) = \sim p \lor \sim q \)
- \( \sim (q \lor \sim r) = \sim q \land r \)
Thus, the negation of the original expression becomes:
\[
(\sim p \lor \sim q) \lor (\sim q \land r).
\]
3. Simplifying this further, we get the final result:
\[
\sim q \land (\sim p \lor r).
\]