Using the property of determinants and without expanding, prove that: \(\begin{vmatrix}1&bc&a(b+c)\\1&ca&b(c+a)\\1&ab&c(a+b)\end{vmatrix}\)=0
\(\triangle=\begin{vmatrix}1&bc&a(b+c)\\1&ca&b(c+a)\\1&ab&c(a+b)\end{vmatrix}\)
By applying C3 \(\to\) C3 + C2, we have:
\(\triangle=\begin{vmatrix}1&bc&ab+bc+ca\\1&ca&ab+bc+ca\\1&ab&ab+bc+ca\end{vmatrix}\)
Here, two columns C1 and C3 are proportional.
∆ = 0.
Read More: Properties of Determinants