Question:

Using differentials,find the approximate value of each of the following (a) (1781)14(\frac{17}{81})^\frac{1}{4} (b) (33)15(33)^{-\frac{1}{5}}

Updated On: Oct 11, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

(a) Consider y=x14y=x^\frac{1}{4}.Let x=1661\frac{16}{61} and Δx=181\frac{1}{81}
Then,Δy=(x+Δx)1/4-x1/4
(1781)14(\frac{17}{81})^\frac{1}{4}(1681)14(\frac{16}{81})^\frac{1}{4}
(1781)14(\frac{17}{81})^\frac{1}{4} -23\frac{2}{3}
(1781)14(\frac{17}{81})^\frac{1}{4}23\frac{2}{3}+Δy

Now,dy is approximately equal to ∆y and is given by,
dy=(dydx)(\frac{dy}{dx}) Δx= 14(x)34\frac{1}{4(x)^{\frac{3}{4}}}(Δx)                       (as y=x14y=x^\frac{1}{4})
14(1681)34(181)\frac {1}{4(\frac{16}{81})^\frac{3}{4}}(\frac{1}{81})274×8\frac{27}{4\times8}181=132×3=196=0.010\frac{1}{81}=\frac{1}{32\times3}=\frac{1}{96}=0.010
Hence, the approximate value of 178114\frac{17}{81}^\frac{1}{4} is  23\frac{2}{3}+0.010=0.667+0.010=0.677.


(b)Consider y=x=15x=\frac{1}{5} . Let x=32 and ∆x=1.

Δy=(x+Δx)15x15Δy=(x+Δx)^{-\frac{1}{5}}-x^{-\frac{1}{5}}=33 (15) (32) (15)  (12)=33^{-  (\frac{1}{5})}  -(32)^{-  (\frac{1}{5})}  -  (\frac{1}{2})
(33) (15)(33)^{-  (\frac{1}{5})}=12\frac{1}{2}+Δy
Now,dy is approximately equal to ∆y and is given by,
dy=(dydx)dy=(\frac{dy}{dx})(Δx)=  15 (x)(65) (Δx) =-   \frac{1}{5  (x) ^{ (\frac{6}{5})}}  (Δx)    (           as  y=15y=\frac{1}{5})
=-15(2)6(1)=1320=0.003\frac{1}{5(2)^6}(1)=-\frac{1}{320}=-0.003

Hence, the approximate value of(33)15 (33)^{\frac{-1}{5}} is 12\frac{1}{2}+(-0.003)
=0.5−0.003=0.497.

Was this answer helpful?
0
0