Match the amino acid given in List-I with their one-letter code given in List-II
\[ \begin{array}{|l|l|} \hline \textbf{Name of amino acid} & \textbf{One-letter code} \\ \hline (A) \; \text{Lysine} & (I) \; W \\ \hline (B) \; \text{Tryptophan} & (II) \; Q \\ \hline (C) \; \text{Tyrosine} & (III) \; K \\ \hline (D) \; \text{Glutamine} & (IV) \; Y \\ \hline \end{array} \]
At 15 atm pressure, $ \text{NH}_3(g) $ is being heated in a closed container from 27°C to 347°C and as a result, it partially dissociates following the equation: $ 2\text{NH}_3(g) \rightleftharpoons \text{N}_2(g) + 3\text{H}_2(g) $ If the volume of the container remains constant and pressure increases to 50 atm, then calculate the percentage dissociation of $ \text{NH}_3(g) $
If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $
Consider the following reaction: $ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g) $ At 27°C, the standard entropy change of the process becomes -0.094 kJ/mol·K. Moreover, standard free energies for the formation of $ \text{CO}_2(g) $ and $ \text{CO}(g) $ are -394.4 and -137.2 kJ/mol, respectively. Predict the nature of the above chemical reaction.