For steel wire,
$L_{S}=1.5\,m, Y_{S}=2\times10^{11}\,N\,m^{-2}$
$r_{S}=\frac{0.25}{2}\,cm=0.125\times10^{-2}\,m$
The stretching force for the steel wire is
$F_{S}=\left(4+6\right)g=10g\,N$
As $Y=\frac{FL}{A\Delta L}=\frac{FL}{\pi r^{2}\,\Delta L}$
$\therefore \Delta L=\frac{FL}{\pi r^{2}\,Y}$
$\therefore \Delta L_{S}=\frac{F_{S}\,L_{S}}{\pi\,r^{2}_{S}\,Y_{S}}$
For brass wire,
$L_B = 1 \,m, Y_B = 1 ? 10^{11}\, N\, m^{-2}$
$r_{B}=\frac{0.25}{2}cm=0.125\times10^{-2}\,m$
The stretching force the brass wire is $F_{B}=6g\,N$
$\therefore \Delta L_{B}=\frac{F_{B}\,L_{B}}{\pi r^{2}_{B}\,Y_{B}}$
Their corresponding ratio is
$\frac{\Delta\,L_{S}}{\Delta\,L_{B}}=\frac{F_{S}}{F_{B}} \frac{L_{S}}{L_{B}} \frac{r^{2}_{B}}{r^{2}_{S}} \frac{Y_{B}}{Y_{S}}$
Substituting the given values, we get
$=\frac{10\,g}{6\,g}\times\frac{1.5}{1}\times\frac{0.125\times10^{-2}}{0.125\times10^{-2}}\times\frac{1\times10^{11}}{2\times10^{11}}$
$=\frac{5}{4}$