1. Vector representation of \( AB \):
The position vectors of \( A \) and \( B \) are:
\[
\vec{A} = \langle -1, 2, 1 \rangle, \quad \vec{B} = \langle 1, -2, 5 \rangle.
\]
The vector \( \overrightarrow{AB} \) is:
\[
\overrightarrow{AB} = \vec{B} - \vec{A} = \langle 1 - (-1), -2 - 2, 5 - 1 \rangle = \langle 2, -4, 4 \rangle.
\]
2. Direction vector of \( CD \):
The direction vector of the line \( CD \) is:
\[
\vec{d}_{CD} = \langle 1, -2, 2 \rangle.
\]
3. Find a point on \( CD \):
From the parametric equation of \( CD \):
\[
x = 4 + t, \quad y = -7 - 2t, \quad z = 8 + 2t.
\]
At \( t = 0 \), a point on \( CD \) is:
\[
C_0 = (4, -7, 8).
\]
4. Shortest distance between \( AB \) and \( CD \):
The formula for the shortest distance between skew lines is:
\[
d = \frac{|(\vec{r}_2 - \vec{r}_1) \cdot (\vec{d}_1 \times \vec{d}_2)|}{|\vec{d}_1 \times \vec{d}_2|}.
\]
Here:
- \( \vec{r}_1 = \langle -1, 2, 1 \rangle \) (point on \( AB \)),
- \( \vec{r}_2 = \langle 4, -7, 8 \rangle \) (point on \( CD \)),
- \( \vec{d}_1 = \overrightarrow{AB} = \langle 2, -4, 4 \rangle \),
- \( \vec{d}_2 = \langle 1, -2, 2 \rangle \).
Compute \( \vec{r}_2 - \vec{r}_1 \):
\[
\vec{r}_2 - \vec{r}_1 = \langle 4 - (-1), -7 - 2, 8 - 1 \rangle = \langle 5, -9, 7 \rangle.
\]
Compute \( \vec{d}_1 \times \vec{d}_2 \):
\[
\vec{d}_1 \times \vec{d}_2 = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k}
2 & -4 & 4
1 & -2 & 2
\end{vmatrix}.
\]
\[
\vec{d}_1 \times \vec{d}_2 = \hat{i} \begin{vmatrix} -4 & 4
-2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 4
1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -4
1 & -2 \end{vmatrix}.
\]
\[
\vec{d}_1 \times \vec{d}_2 = \hat{i}(8 - (-8)) - \hat{j}(4 - 4) + \hat{k}(-4 - (-4)).
\]
\[
\vec{d}_1 \times \vec{d}_2 = \langle 16, 0, 0 \rangle.
\]
Compute \( (\vec{r}_2 - \vec{r}_1) \cdot (\vec{d}_1 \times \vec{d}_2) \):
\[
(\vec{r}_2 - \vec{r}_1) \cdot (\vec{d}_1 \times \vec{d}_2) = \langle 5, -9, 7 \rangle \cdot \langle 16, 0, 0 \rangle = 5 \cdot 16 + 0 + 0 = 80.
\]
Compute \( |\vec{d}_1 \times \vec{d}_2| \):
\[
|\vec{d}_1 \times \vec{d}_2| = \sqrt{16^2 + 0^2 + 0^2} = \sqrt{256} = 16.
\]
Shortest distance:
\[
d = \frac{|80|}{16} = 5.
\]
5. Area of the parallelogram:
The area of the parallelogram is given by:
\[
{Area} = |\overrightarrow{AB}| \cdot d,
\]
where:
\[
|\overrightarrow{AB}| = \sqrt{2^2 + (-4)^2 + 4^2} = \sqrt{4 + 16 + 16} = \sqrt{36} = 6.
\]
Substitute:
\[
{Area} = 6 \cdot 5 = 30.
\]
Final Answer:
The distance between \( AB \) and \( CD \) is \( \boxed{5} \), and the area of the parallelogram is \( \boxed{30} \).