Step 1: Let the vertices of the triangle be
\[
A(5,-1),\quad B(-2,3),\quad C(x,y)
\]
Given that the orthocentre is the origin $O(0,0)$.
Step 2: If the orthocentre is at the origin, then:
$OA \perp BC$
$OB \perp AC$
Step 3: Slope of $OA$:
\[
m_{OA}=\frac{-1-0}{5-0}=-\frac{1}{5}
\]
Hence slope of $BC$ is:
\[
m_{BC}=5
\]
Equation of $BC$ through $B(-2,3)$:
\[
y-3=5(x+2)
\Rightarrow y=5x+13
\]
Since $C(x,y)$ lies on $BC$:
\[
y=5x+13 \quad \cdots (1)
\]
Step 4: Slope of $OB$:
\[
m_{OB}=\frac{3-0}{-2-0}=-\frac{3}{2}
\]
Hence slope of $AC$ is:
\[
m_{AC}=\frac{2}{3}
\]
Equation of $AC$ through $A(5,-1)$:
\[
y+1=\frac{2}{3}(x-5)
\Rightarrow y=\frac{2}{3}x-\frac{13}{3}
\]
Since $C(x,y)$ lies on $AC$:
\[
y=\frac{2}{3}x-\frac{13}{3} \quad \cdots (2)
\]
Step 5: Solve equations (1) and (2):
\[
5x+13=\frac{2}{3}x-\frac{13}{3}
\]
Multiply by 3:
\[
15x+39=2x-13
\Rightarrow 13x=-52
\Rightarrow x=-4
\]
Substitute $x=-4$ in (1):
\[
y=5(-4)+13=-20+13=-7
\]
Step 6: Hence, the coordinates of the third vertex are:
\[
(-4,-7)
\]