Question:

Two vertices of a triangle are $(5,-1)$ and $(-2,3)$. If the origin is the orthocentre of this triangle, then the coordinates of the third vertex of that triangle are

Show Hint

If the orthocentre is at the origin, position vectors of vertices satisfy perpendicularity conditions using dot products or slopes.
Updated On: Jan 14, 2026
  • $(4,7)$
  • $\left(-2,\,-\dfrac{7}{2}\right)$
  • $(-4,-7)$
  • $(-2,3)$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Let the vertices of the triangle be \[ A(5,-1),\quad B(-2,3),\quad C(x,y) \] Given that the orthocentre is the origin $O(0,0)$.
Step 2: If the orthocentre is at the origin, then:

$OA \perp BC$
$OB \perp AC$

Step 3: Slope of $OA$: \[ m_{OA}=\frac{-1-0}{5-0}=-\frac{1}{5} \] Hence slope of $BC$ is: \[ m_{BC}=5 \] Equation of $BC$ through $B(-2,3)$: \[ y-3=5(x+2) \Rightarrow y=5x+13 \] Since $C(x,y)$ lies on $BC$: \[ y=5x+13 \quad \cdots (1) \]
Step 4: Slope of $OB$: \[ m_{OB}=\frac{3-0}{-2-0}=-\frac{3}{2} \] Hence slope of $AC$ is: \[ m_{AC}=\frac{2}{3} \] Equation of $AC$ through $A(5,-1)$: \[ y+1=\frac{2}{3}(x-5) \Rightarrow y=\frac{2}{3}x-\frac{13}{3} \] Since $C(x,y)$ lies on $AC$: \[ y=\frac{2}{3}x-\frac{13}{3} \quad \cdots (2) \]
Step 5: Solve equations (1) and (2): \[ 5x+13=\frac{2}{3}x-\frac{13}{3} \] Multiply by 3: \[ 15x+39=2x-13 \Rightarrow 13x=-52 \Rightarrow x=-4 \] Substitute $x=-4$ in (1): \[ y=5(-4)+13=-20+13=-7 \]
Step 6: Hence, the coordinates of the third vertex are: \[ (-4,-7) \]
Was this answer helpful?
0
0