21 : 25
17 : 25
Given:
Let the cost price of the mixture be \( x \). Given: \[ 1.1x = 40 \Rightarrow x = \frac{40}{1.1} \] In the 3:2 mixture, the cost price per kg is: \[ \frac{3a + 2b}{5} = \frac{40}{1.1} \Rightarrow 3a + 2b = \frac{200}{1.1} = 181.82\ldots \quad \text{(equation 1)} \] To avoid decimals, multiply both sides by 1.1: \[ 3.3a + 2.2b = 200 \quad \text{(1)} \]
Similarly, for 5% profit: \[ 1.05x = 40 \Rightarrow x = \frac{40}{1.05} \] In the 2:3 mixture: \[ \frac{2a + 3b}{5} = \frac{40}{1.05} \Rightarrow 2a + 3b = \frac{200}{1.05} = 190.47\ldots \] Multiply both sides by 1.05: \[ 2.1a + 3.15b = 200 \quad \text{(2)} \]
From equations (1) and (2): \[ 3.3a + 2.2b = 200 \] \[ 2.1a + 3.15b = 200 \] Subtracting: \[ (3.3a - 2.1a) + (2.2b - 3.15b) = 0 \Rightarrow 1.2a = 0.95b \Rightarrow \frac{a}{b} = \frac{0.95}{1.2} = \frac{19}{24} \]
✅ Final Answer: The cost price ratio of tea A to tea B is 19:24
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: