Step 1: Understanding the formula for the long chord. The length of the long chord (\(L\)) for a circular curve is given by: \[ L = 2R \sin \left(\frac{\Delta} {2} \right) \] where: - \( R \) = 500m (radius), - \( \Delta \) = \(180^\circ - 120^\circ = 60^\circ\).
Step 2: Calculating the long chord. \[ L = 2 \times 500 \times \sin \left(30^\circ\right) = 1000 \times 0.5 = 500m. \]
Step 3: Computing the mid-ordinate (\(M\)). The mid-ordinate is given by: \[ M = R \left( 1 - \cos \frac{\Delta}{2} \right) \] Substituting values: \[ M = 500 \left( 1 - \cos 30^\circ \right) = 500 \times (1 - 0.866) \] \[ M = 500 \times 0.134 = 66.987m. \]
Step 4: Selecting the correct option. Thus, the correct values are \(866.025, 250\).